Management of energy saving projects and investments in energy saving measures in educational institutions
DOI:
https://doi.org/10.51599/is.2022.06.04.07Keywords:
management of energy saving projects, energy investments and innovations, energy saving measures, educational institutions, energy consumption, energy needs, energy system, energy saving strategy, renewable energy, energy behavior.Abstract
Purpose. The purpose of the study is to generalize modern approaches to the management of energy saving projects and energy investments in energy saving measures in educational institutions.
Results. The article proves that the management of energy-saving projects and energy investments in energy-saving measures in educational institutions is significantly burdened by the deficit of budgets at all levels and the caution of hardened investors. It is concluded that since energy bills are one of the highest items in education expenditure, significant efforts are being made to reduce the cost of energy bills through what we call improving the energy efficiency of municipal buildings. Applying the concept of energy efficiency leads to a reduction in the costs of municipalities to pay electricity bills and allows municipalities to use the saved funds to build new projects and improve the level of educational services for citizens during times of peak load or interruptions/disconnections from the power grid. It was proved that there is a direct relationship between the behavior of participants in the educational process, their choice of energy behavior and educational losses. In addition, the degree of realization of the theoretical potential for energy load reduction depends on individual decision-making processes regarding energy efficiency improvement in the budget sector and can significantly reduce air pollution and greenhouse gas emissions. Entrants are willing to accept the institution’s energy-saving costs, which are taken into account when calculating the cost of education, only if the institution is committed to complete elimination or at least all relevant measures have been taken in this direction. That is, the institution does everything to ensure the provision of educational services in comfortable conditions, taking into account the safety of life. However, although institutions will make a lot of energy-saving efforts to implement appropriate measures, this cannot be done without lifting martial law and restoring the continuity of the electricity grid throughout the country.
Scientific novelty. The scientific novelty consists in updating the impact of the management of energy saving projects and energy investments in energy saving measures in educational institutions on the cost and, accordingly, the availability of education in Ukraine.
Practical value. The practical value of the conducted research lies in the strategizing of energy saving projects and energy investments in energy saving measures in educational institutions.
References
Прокопенко О. В., Троян М. Ю. Поведінка споживачів. Київ: Центр навчальної літератури. 2008. 175 с.
Blesl M., Das A., Fahl U., Remme U. Role of energy efficiency standards in reducing CO2 emissions in Germany: an assessment with TIMES. Energy Policy. 2007. Vol. 35. Is. 2. Рp. 772–785. https://doi.org/10.1016/j.enpol.2006.05.013.
Yasnolob I., Chayka T., Rudych A., Bezkrovnyi O. et al. Human factor in the creation and development of energy independent and energy efficient rural settlements. Journal of Environmental Management and Tourism. 2019. Vol. X. No. 5(37). Pp. 1029–1036. https://doi.org/10.14505//jemt.v10.5(37).10.
Zos-Kior M., Hnatenko I., Isai O., Shtuler I. et al. Management of efficiency of the energy and resource saving innovative projects at the processing enterprises. Management Theory and Studies for Rural Business and Infrastructure Development. 2020. Vol. 42. No. 4. Pp. 504–515. https://doi.org/10.15544/mts.2020.52.
Bruno R., Bevilacqua P., Arcuri N. Assessing cooling energy demands with the EN ISO 52016-1 quasi-steady approach in the Mediterranean area. Journal of Building Engineering. 2019. Vol. 24. 100740. https://doi.org/10.1016/j.jobe.2019.100740.
Carpino C., Bruno R., Carpino V., Arcuri N. Improve decision-making process and reduce risks in the energy retrofit of existing buildings through uncertainty and sensitivity analysis. Energy for Sustainable Development. 2022. No. 68. Pp. 289–307. https://doi.org/10.1016/j.esd.2022.04.007.
Grajcar M. Energy efficiency and the Ukrainian paradox. ULR: https://iea.blob.core.windows.net/assets/imports/events/122/Maria_Grajcar_2015_03_23_Kiev.pdf.
LaCommare K. H., Eto J. H. Understanding the cost of power interruptions to U.S. electricity consumers. Berkeley: University of California, 2004. https://doi.org/10.2172/834270.
Manikya R., Prasad P., Tulasi R. Consumer outage cost evaluation in electric power systems. Journal of Engineering and Applied Sciences. 2010. Vol. 5. Рp. 88–96.
Prose F., Engellandt C., Bendrien J. Kommunale akteure und soziale netze – ein sozialspsychologisches rahmenmodell zur analyse kommunalen klimaschutzes. Klimaschutz als sozialer Prozess; eds. U. Böde, E. Gruber. Technik, Wirtschaft und Politik. Vol. 44. Physica, Heidelberg, 2000. Pp. 13–61. https://doi.org/10.1007/978-3-662-12151-1_2.
Gröger M., Schmid V., Bruckner T. Lifestyles and their impact on energy-related investment decisions. Low Carbon Economy. 2011. Vol. 2. No. 2. Рp. 107–114. https://doi.org/10.4236/lce.2011.22014.
Schuler A., Weber C., Fahl U. Energy consumption for space heating of west german households: empirical evidence, scenario projections and policy implications. Energy Policy. 2000. Vol. 28. Is. 12. Рp. 877–894. https://doi.org/10.1016/S0301-4215(00)00074-4.
Schuster K., Lantermann E.-D. Lebensstilanalyse in der Naturschutzkommunikation: Ein Instrument zur Akzeptanzsteigerung für den Naturschutz. Zeitschrift für Naturschutz und Landschaftspflege. 2002. Vol. 77. Is. 3. Рp. 116–119.
Yasnolob I., Gorb O., Kozachenko Y., Kalian O. et al. Energy independence and energy efficiency of populated areas in the system of management. Journal of Environmental Management and Tourism. 2019. Vol. 10. No. 3. Pp. 538–549. https://doi.org/10.14505//jemt.v10.3(35).09.
European Environment Agency. ULR: http://www.eea.europa.eu.
References
Prokopenko, O. V., & Troyan, M. Yu. (2008). Consumer behavior. Kyiv, Center for Educational Literature.
Blesl, M., Das, A., Fahl, U., & Remme, U. (2007). Role of energy efficiency standards in reducing CO2 emissions in Germany: an assessment with TIMES. Energy Policy, 35(2), 772–785. https://doi.org/10.1016/j.enpol.2006.05.013.
Yasnolob, I., Chayka, T., Rudych, A., Bezkrovnyi, O., Danylenko, V., Shulga, L., & Svitlychna, A. (2019). Human factor in the creation and development of energy independent and energy efficient rural settlements. Journal of Environmental Management and Tourism, X, 5(37), 1029–1036. https://doi.org/10.14505//jemt.v10.5(37).10.
Zos-Kior, M., Hnatenko, I., Isai, O., Shtuler, I., Samborskyi, O., & Rubezhanska, V. (2020). Management of efficiency of the energy and resource saving innovative projects at the processing enterprises. Management Theory and Studies for Rural Business and Infrastructure Development, 42(4), 504–515. https://doi.org/10.15544/mts.2020.52.
Bruno, R., Bevilacqua, P., & Arcuri, N. (2019). Assessing cooling energy demands with the EN ISO 52016-1 quasi-steady approach in the Mediterranean area. Journal of Building Engineering, 24, 100740. https://doi.org/10.1016/j.jobe.2019.100740.
Carpino, C., Bruno, R., Carpino, V., & Arcuri, N. (2022). Improve decision-making process and reduce risks in the energy retrofit of existing buildings through uncertainty and sensitivity analysis. Energy for Sustainable Development, 68, 289–307. https://doi.org/10.1016/j.esd.2022.04.007.
Grajcar, M. (2015). Energy efficiency and the Ukrainian paradox. Available at: https://iea.blob.core.windows.net/assets/imports/events/122/Maria_Grajcar_ 2015_03_23_Kiev.pdf.
LaCommare, K. H., & Eto, J. H. (2004). Understanding the cost of power interruptions to electricity consumers. Berkeley, University of California. https://doi.org/10.2172/834270.
Manikya, R., Prasad, P., & Tulasi, R. (2010). Consumer outage cost evaluation in electric power systems. Journal of Engineering and Applied Sciences, 5, 88–96.
Prose, F., Engellandt, C., & Bendrien, J. (2000). Kommunale akteure und soziale netze – ein sozialspsychologisches rahmenmodell zur analyse kommunalen klimaschutzes. In U. Böde, E. Gruber (Eds). Klimaschutz als sozialer Prozess (pp. 13–61). Technik, Wirtschaft und Politik, vol. 44. Physica, Heidelberg. https://doi.org/10.1007/978-3-662-12151-1_2.
Gröger, M., Schmid, V., & Bruckner, T. (2011). Lifestyles and their impact on energy-related investment decisions. Low Carbon Economy, 2(2), 107–114. https://doi.org/10.4236/lce.2011.22014.
Schuler, A., Weber, C., & Fahl, U. (2000). Energy consumption for space heating of west german households: empirical evidence, scenario projections and policy implications. Energy Policy, 28(12), 877–894. https://doi.org/10.1016/S0301-4215(00)00074-4.
Schuster, K., & Lantermann, E.-D. (2002). Lebensstilanalyse in der Naturschutzkommunikation: Ein Instrument zur Akzeptanzsteigerung für den Naturschutz. Zeitschrift für Naturschutz und Landschaftspflege, 77(3), 116–119.
Yasnolob, I., Gorb, O., Kozachenko, Y., Kalian, O., Borovyk, T., & Zahrebelna, I. (2019). Energy independence and energy efficiency of populated areas in the system of management. Journal of Environmental Management and Tourism, 10(3), 538–549. https://doi.org/10.14505//jemt.v10.3(35).09.
European Environment Agency (2022). Available at: http://www.eea.europa.eu.