Integration of nature-based solutions into urban ecosystems in the context of rapid urbanisation and climate change
DOI:
https://doi.org/10.51599/is.2024.08.01.10Keywords:
sustainable development, circular economy, green building, building greening systems, urban farming, built urban environment.Abstract
Purpose. The aim of the study is to review the current state of integration of nature-based solutions into urban ecosystems, which can counteract the negative consequences of urbanisation and contribute to the circular economy by providing ecosystem services.
Results. The conducted study has revealed that nature-based solutions offer prospects for addressing various problems caused by the negative impacts of urbanisation and climate change, ranging from biodiversity loss to the creation of sustainable urban environments and the development of “green” economic opportunities. Three scales of implementing nature-based solutions in the built environment are analysed: “green” building materials, systems for the greening of buildings, and “green” urban areas. It has been proven that they are valuable tools for providing numerous benefits to urban ecosystems and can effectively help combat the consequences of climate change, stimulate local economic development, and contribute to sustainable development. However, the study also found that successful implementation of such solutions requires additional research and monitoring, considering various aspects such as ecological, economic, and social factors. Cost-benefit analysis and the involvement of a wide range of stakeholders are key elements for the successful implementation of nature-based solutions in cities.
Scientific novelty. The necessity of considering different levels of implementation of nature-based solutions in the built environment has been identified as part of an integrated urban network that promotes the transition to a circular economy and the creation of sustainable and efficient urban environments. The integration of circular economy approaches will enhance the efficiency, sufficiency, and coherence of nature-based solutions. For the first time, a comprehensive analysis of the integration of nature-based solutions (green building materials, building green systems and green urban areas) into urban ecosystems under conditions of rapid urbanisation and climate change is carried out, and the positive impacts and potential negative consequences of their implementation are summarised. Practical recommendations are proposed for planning methods and cost assessments for the implementation of nature-based initiatives, considering a wide range of environmental, economic, and social aspects.
Practical value. The discussed nature-based solutions will serve as a basis for developing sustainable urban development policies in post-war recovery in Ukraine: they can form the basis for restoring ecosystems and natural resources; ensure social interaction among city residents; stimulate the development of new economic opportunities in affected cities (urban farming, attracting investments, and creating new jobs); become part of the overall process of urban infrastructure restoration, including biomimicry in architectural design and the use of eco-friendly building materials.
References
United Nations Convention to Combat Desertification. The Global Land Outlook, 2nd ed. Bonn: UNCCD, 2022. 204 р.
Дудяк Н. В., Баруліна І. Ю. Розвиток сіті-фермерства в Україні як перспективний шлях подолання продовольчої кризи. Таврійський науковий вісник. Серія: Економіка. 2022. № 12. С. 20–28. https://doi.org/10.32851/2708-0366/2022.12.3.
Onder S., Dursun S. Global climate changes and effects on urban climate of urban green spaces. International Journal of Thermal and Environmental Engineering. 2010. Vol. 3. No. 1. Pp. 37–41. https://doi.org/10.5383/ijtee.03.01.006.
Cities and Climate Change. Policy perspectives. National governments enabling local action. OECD, 2014. 21 р. URL: https://www.oecd.org/env/cc/Cities-and-climate-change-2014-Policy-Perspectives-Final-web.pdf.
Wen B., Musa S. N., Onn C. C., Ramesh S. et al. The role and contribution of green buildings on sustainable development goals. Building and Environment. 2020. Vol. 185. 107091. https://doi.org/10.1016/j.buildenv.2020.107091.
Ding Z., Fan, Z., Tam, V. W. Y., Bian, Yu. et al. Green building evaluation system implementation. Building and Environment. 2018. Vol. 133. Pp. 32–40. https://doi.org/10.1016/j.buildenv.2018.02.012.
Bungau C. C., Bungau T., Prada I. F., Prada M. F. Green buildings as a necessity for sustainable environment development: dilemmas and challenges. Sustainability. 2022. Vol. 14. No. 20. 13121. https://doi.org/10.3390/su142013121.
Twidell J., Weir T. Renewable energy resources, 3rd ed. Routledge: Taylor and Francis, 2015. 816 р. https://doi.org/10.4324/9781315766416.
Bhutta F. M. Application of smart energy technologies in building sector – future prospects. 2017 International Conference on Energy Conservation and Efficiency (ICECE) (Lahore, 22–23 November 2017). Lahore, 2017. https://doi.org/10.1109/ece.2017.8248820.
Yan R., Xiang X., Cai W., Ma M. Decarbonizing residential buildings in the developing world: historical cases from China. Science of The Total Environment. 2022. Vol. 847. 157679. https://doi.org/10.1016/j.scitotenv.2022.157679.
Nature-based solutions. EU-funded nbs research projects tackle the climate and biodiversity crisis. European Commission, 2023. URL. https://ec.europa.eu/research/environment/index.cfm?pg=nbs.
Xie L., Bulkeley H. Nature-based solutions for urban biodiversity governance. Environmental Science & Policy. 2020. Vol. 110. Pp. 77–87. https://doi.org/10.1016/j.envsci.2020.04.002.
Dushkova D., Haase D. Not simply green: nature-based solutions as a concept and practical approach for sustainability studies and planning agendas in cities. Land. 2020. Vol. 9. No. 1. 19. https://doi.org/10.3390/land9010019.
Scott M., Lennon M., Haase D., Kazmierczak A. et al. Nature-based solutions for the contemporary city. Planning Theory & Practice. 2016. Vol. 17. No. 2. Pp. 267–300. https://doi.org/10.1080/14649357.2016.1158907.
Pearlmutter D., Theochari D., Nehls T., Pinho P. et al. Enhancing the circular economy with nature-based solutions in the built urban environment: green building materials, systems and sites. Blue-Green Systems. 2020. Vol. 2. No. 1. Pp. 46–72. https://doi.org/10.2166/bgs.2019.928.
Buchin O., Hoelscher M.-Th., Meier F., Nehls T., Ziegler F. Evaluation of the health-risk reduction potential of countermeasures to urban heat. Energy and Buildings. 2016. Vol. 114. Pp. 27–37. https://doi.org/10.1016/j.enbuild.2015.06.038.
WWAP (United Nations World Water Assessment Programme)/UN-Water. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water. Paris: UNESCO, 2018. 154 p. URL: https://unesdoc.unesco.org/ark:/48223/pf0000261424.
Langergraber G., Pucher B., Simperler L., Kisser J. et al. Implementing nature-based solutions for creating a resourceful circular city. Blue-Green Systems. 2020. Vol. 2. No. 1. Pp. 173–185. https://doi.org/10.2166/bgs.2020.933.
Prieto-Sandoval V., Jaca C., Ormazabal M. Towards a consensus on the circular economy. Journal of Cleaner Production. 2018. Vol. 179. Pp. 605–615. https://doi.org/10.1016/j.jclepro.2017.12.224.
Browning W. D., Ryan C. O., Clancy J. O. 14 patterns of biophilic design. New York: Terrapin Bright Green, LLC, 2014. 64 р. URL: https://www.terrapinbrightgreen.com/wp-content/uploads/2014/09/14-Patterns-of-Biophilic-Design-Terrapin-2014p.pdf.
International Energy Outlook 2017. US Energy Information Administration, 2017. 76 р. URL: https://www.eia.gov/outlooks/archive/ieo17.
Huberman N., Pearlmutter D., Gal E., Meir I. A. Optimizing structural roof form for life-cycle energy efficiency. Energy and Buildings. 2015. Vol. 104. Pp. 336–349. https://doi.org/10.1016/j.enbuild.2015.07.008.
Ляліна Н. П., Вотченікова О. В. Безпечність інноваційних будівельних матеріалів з технічних конопель. Маркетингові стратегії, підприємництво і торгівля: сучасний стан, напрямки розвитку: матер. міжнар. наук.-практ. конф., (м. Київ, 20.04.2023). Київ, 2023. С. 408–410.
Бородай С. П., Бородай Д. С., Бородай А. С., Бородай Я. О. Екологічні технології будівництва у сучасній народній архітектурі північно-східної України. Містобудування та територіальне планування. 2021. № 77. С. 85–99. URL: https://repo.snau.edu.ua/bitstream/123456789/9205/1/Екологічні%20технології%20будівництва.pdf.
Бікс Ю. С., Ратушняк Г. С., Ратушняк О. Г., Лялюк А. О. Установка для дослідження теплопровідності енергоефективних теплоізоляційних матеріалів рослинного походження. Сучасні технології, матеріали і конструкції в будівництві. 2020. Т. 28. № 1. С. 100–107. https://doi.org/10.31649/2311-1429-2020-1-100-107.
Кузнецова А. Використання соломи в Україні – можливості та перспективи. Київ: Німецько-український аграрний діалог, Інститут економічних досліджень та політичних консультацій, 2010. 24 с. URL: http://www.ier.com.ua/files/publications/Policy_papers/Agriculture_dialogue/2010/AgPP_31_ukr.pdf.
Koniuk A., Danko K. Problems of architectural organization of environmental and energy-efficient housing on the example of environmental blocked residential building in the Poltava city. Energy-Efficiency in Civil Engineering and Architecture. 2018. No. 11. Pp. 112–119. https://doi.org/10.32347/2310-0516.2018.11.112-119.
Florentin Y., Pearlmutter D., Givoni B., Gal E. A life-cycle energy and carbon analysis of hemp-lime bio-composite building materials. Energy and Buildings. 2017. Vol. 156. Pp. 293–305. https://doi.org/10.1016/j.enbuild.2017.09.097.
ДСТУ Б В.2.6-189:2013. Методи вибору теплоізоляційного матеріалу для утеплення будівель. Чинний від 2014-01-01. Вид. офіц. Київ, 2014. 55 с.
Getter K. L., Rowe D. B. The role of extensive green roofs in sustainable development. HortScience. 2006. Vol. 41. No. 5. Pp. 1276–1285. https://doi.org/10.21273/hortsci.41.5.1276.
Perini K., Ottelé M., Haas E. M., Raiteri R. Greening the building envelope, facade greening and living wall systems. Open Journal of Ecology. 2011. Vol. 01. No. 01. Pp. 1–8. https://doi.org/10.4236/oje.2011.11001.
Yang B. Planting green to the sky: vertical greening of existing residential building facades in Gothenburg. Chalmers University of Technology, 2020. 41 p. URL: https://projects.arch.chalmers.se/wp-ontent/uploads/2020/06/Yang_Bonan_Building-design-for-sustainablity_Mt20Booklet.pdf.