From nature to buildings: a biomimetic approach as an alternative against structures’ humidity issues in Jijel – Algeria

Authors

DOI:

https://doi.org/10.51599/is.2024.08.02.07

Keywords:

adaptation, biomimicry, building material, humidity, plants.

Abstract

Purpose. This study aims to explore the plants’ potential to adjust to humid climates and understand their acclimation processes to inspire building designs and develop moisture-resistant building materials. It’s based on the top-down biomimetic approach and proposes a method for applying biological processes to architectural concepts, referring to the anatomical diagnoses of moisture-resistant plants.

Results. The study revealed that mimicking the hierarchical structuring observed in leaf venation patterns significantly improved the mechanical strength and flexibility of the biomimetic materials. The results indicated that plants had evolved several morphological and physiological adaptations and validated the importance of considering both the cuticle and stomata as essential adaptive factors in developing a biomimetic process. Plant adaptation mechanisms led to a focus on porosity, external textures, hydrophobic additives, and multilayer structures of building materials to produce compositions suitable for humid climates inspired by these principles.

Scientific novelty. This research contributes to our understanding of how plants adapt to high humidity levels and underlines the importance of adopting the principles developed by biological systems to survive and cope with changing conditions.

Practical value. This study opens insights for more resilient bio-inspired architecture that responds adaptively to humid climatic environments and highlights the significance of creating suitable building materials for different climates and those adapted for climate change.

References

Organisation des Nations Unies (ONU) (2020). Rapport sur la situation mondiale des bâtiments et de la construction en 2020. Vers un secteur de bâtiments et de la construction à émission zéro, efficace et résilient. Available at: https://globalabc.org/sites/default/files/2021-01/Buildings-GSR-2020_ES_FRENCH.pdf.

Mayer, N. (2020). Le réchauffement climatique va rendre plusieurs régions du monde inhabitable et cela a déjà commencé. Futura-Sciences. Available at: https://www.futura-sciences.com/planete/actualites/rechauffement-climatique-rechauffement-climatique-va-rendre-plusieurs-regions-monde-inhabitable-cela-deja-commence-80959.

Raymond, C., Matthews, T., & Horton, R. M. (2020). The emergence of heat and humidity too severe for human tolerance. Science Advances, 8(6(19), eaaw1838. https://doi.org/10.1126/sciadv.aaw1838.

Berger, J. (2014). Contribution `a la mod´elisation hygrothermique des bˆatiments: application des m´ethodes de r´eduction de mod`ele. G´enie civil. Universit´e Grenoble Alpes. Available at: https://www.proquest.com/openview/54c6f45be48e29b2dcb65b5bf0be6cad/1?pq-origsite=gscholar&cbl=46209.

Agence Nationale pour la Promotion et la Rationalisation de l'Utilisation de l'Energie. (2016). Bilan énergétique national 2015. Ministère de l’énergie. Available at: https://www.energy.gov.dz/Media/galerie/benational_annee-2015_5dac412d2ff20.pdf.

Ounis, S. (2022). Impact des choix formels et constructifs de la façade sur l’adaptabilité climatique et l’efficacité énergétique d’un bâtiment (Thèse de doctorat). Université Mohamed Khider Biskra. Available at: http://thesis.univ-biskra.dz/6236/1/S.OUNIS_Thesis.pdf.

Déléaz, T. (2020). Changement climatique: le rôle de l’homme loin d’être une évidence pour tous. Available at: https://www.lepoint.fr/environnement/changement-climatique-le-role-de-l-homme-loin-d-etre-une-evidence-pour-tous-01-12-2020-2403596_1927.php.

Moran, E. F. (2018). Human adaptability. An introduction to ecological anthropology, 3rd ed. New York, Routledge. https://doi.org/10.4324/9780429493706.

Chayaamor-Heil, N., & Vitalis, L. (2021). Biology and architecture: an ongoing hybridization of scientific knowledge and design practice by six architectural offices in France. Frontiers of Architectural Research, 10(2), 240–262. https://doi.org/10.1016/j.foar.2020.10.002.

Simonet, G. (2015). Une brève histoire de l’adaptation: l’évolution conceptuelle au fil des rapports du GIEC (1990-2014). Natures Sciences Sociétés, 23, S52–S64. https://doi.org/10.1051/nss/2015018.

NouvelObs (2016). Biomimétisme: cinq inventions géniales inspirées par la nature. Available at: https://www.nouvelobs.com/rue89/rue89-planete/20120324.RUE8759/biomimetisme-cinq-inventions-geniales-inspirees-par-la-nature.html.

Vertigo Lab (2017). Le biomimétisme est dépassé: vive la bioinspiration! Six principes clés inspirés du vivant pour une innovation durable au service de la transition écologique et énergétique des territoires et des organisations. Available at: https://vertigolab.eu/le-biomimetisme-est-depasse-vive-la-bioinspiration-six-principes-cles-inspires-du-vivant-pour-une-innovation-durable-au-service-de-la-transition-ecologique-et-energetique-des-territoires-et-des-or.

Barratt, B. I. P., Moran, V. C., Bigler, F., & Van Lenteren, J. C. (2018). The status of biological control and recommendations for improving uptake for the future. BioControl, 63, 155–167. https://doi.org/10.1007/s10526-017-9831-y.

Lawson, M. (1998). Review: Biomimicry: innovation inspired by nature, by Janine M. Benyus. The American Biology Teacher, 60(5), 392–392. https://doi.org/10.2307/4450504.

Pawlyn, M. (2011). Biomimicry in architecture. London, RIBA Publishing. Available at: https://www.ribabooks.com/biomimicry-in-architecture_9781859463800.

Pendersen Zari, M. (2007). Biomimetic approaches to architectural design for increased sustainability. Sustainable Building Conference (SB07), Auckland. Available at: https://www.academia.edu/9509268.

Parker, A. R., & Lawrence, C. R. (2001). Water capture by a desert beetle. Nature, 414, 33–34. https://doi.org/10.1038/35102108.

Turner, J. S., & Soar, R. C. (2008). Beyond biomimicry: what termites can tell us about realizing the living building. First International Conference on Industrialized, Intelligent Construction at Loughborough University (pp. 1–18). Available at: https://digital.library.adelaide.edu.au/dspace/bitstream/2440/84302/2/hdl_84302.pdf#page=247.

Gulipac, S. (2016). Industrial symbiosis: building on Kalundborg’s waste management experience. Renewable Energy Focus, 17(1), 25–27. https://doi.org/10.1016/j.ref.2015.11.015.

Webb, M. (2022). Biomimetic building facades demonstrate potential to reduce energy consumption for different building typologies in different climate zones. Clean Technologies and Environmental Policy, 24, 493–518. https://doi.org/10.1007/s10098-021-02183-z.

Grillo, E., Milardi, M., & Olivieri, F. (2024). A review of innovative materials for the design of adaptive biomimetic façades. In F. Alberti, P. Gallo, A. R. Matamanda, E. J. Strauss (Eds.), Resilient Planning and Design for Sustainable Cities. UPADSD 2022. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-031-47794-2_19.

Haider, Z., Salman, M., & Girma, A. (2023). Biomimetic architecture: an innovative approach to attain sustainability in built environment. Ethiopian International Journal of Engineering and Technology, 1(2), 39–49. https://doi.org/10.59122/144cfc15.

Oguntona, O. A., & Ohis, A. C. (2016). Biomimetic strategies for climate change adaptation in the built environment – a literature review. Proceedings of the 9th international conference of faculty of architecture research unit (FARU) (pp. 87–96). University of Moratuwa, Sri Lanka, September 09–10, Colombo.

Helms, M., Vattam, S. S., & Goel, A. K. (2009). Biologically inspired design: process and products. Design Studies, 30(5), 606p–622p. https://doi.org/10.1016/j.destud.2009.04.003.

Sommese, F., & Ausiello, G. (2023). From nature to architecture for low tech solutions: biomimetic principles for climate-adaptive building envelope. In E. Arbizzani et al. (Eds.), Technological Imagination in the Green and Digital Transition. CONF.ITECH 2022. The Urban Book Series. Springer, Cham. https://doi.org/10.1007/978-3-031-29515-7_39.

Khennouf, H., Chefrour, A., Corcket, E., Alard, D., Véla, E. (2018). La végétation dunaire du littoral de Jijel (Algérie): proposition d’une nouvelle Zone Importante pour les Plantes. Revue d’Écologie (La Terre et La Vie), 73(3), 345–362. https://doi.org/10.3406/revec.2018.1940.

Weatherspark (2022). Climat et moyennes météorologiques tout au long de l’année pour Jijel. Available at: https://fr.weatherspark.com/y/51515/M%C3%A9t%C3%A9o-moyenne-%C3%A0-Jijel-Alg%C3%A9rie-tout-au-long-de-l’ann%C3%A9e#Sections-Humidity.

Parc Nationale TAZA (2019). Plan de gestion IV du parc national de TAZA 2014–2019. Phase A: Description et analyse. Direction générale des forêts.

Peters, T. (2011). Nature as measure: the biomimicry guild. Architectural Design, 81(6), 44–47. https://doi.org/10.1002/ad.1318.

Ford, K. L., Albert, J. S., Summers, A. P., Hedrick, B. P., Schachner, E. R., Jones, A. S., Evans, K., & Chakrabarty, P. (2023). A new era of morphological investigations: reviewing methods for comparative anatomical studies. Integrative Organismal Biology, 5(1), https://doi.org/10.1093/iob/obad008.

Launay, F. (2020). Comment faire une observation microscopique? Available at: https://microptique.com/blogs/articles-microscopes/comment-faire-une-observation-microscopique.

Djekota, C., Mbaye, M. S., Diop, D., & Noba, K. (2020). Poils épidermiques, types stomatiques et taxonomie chez les morphotypes de karité Vitellaria paradoxa CF Gaertn subsp. Journal of Animal & Plant Sciences, 45(1), 7758–7770. https://doi.org/10.35759/JAnmPlSci.v45-1.1.

Clark, J. W., Harris, B. J., Hetherington, A. J., Hurtado-Castano, N., Branch, R. A., Casson, S., ... & Hetherington, A. M. (2022). The origin and evolution of stomata. Current Biology, 32(11), R539–R553. https://doi.org/10.1016/j.cub.2022.04.040.

Prat, R., & Camus, G. (2013). Observation de stomates. Planet-Vie. Available at: https://planet-vie.ens.fr/thematiques/vegetaux/anatomie-vegetale-et-histologie-vegetale/observation-de-stomates.

López, M., Rubio, R., Martín, S., & Croxford, B. (2017). How plants inspire façades. From plants to architecture: biomimetic principles for the development of adaptive architectural envelopes. Renewable and Sustainable Energy Reviews, 67, 692–703. https://doi.org/10.1016/j.rser.2016.09.018.

Downloads

How to Cite

Ouroua, C., Debache, S., & Milardi, M. (2024). From nature to buildings: a biomimetic approach as an alternative against structures’ humidity issues in Jijel – Algeria. Journal of Innovations and Sustainability, 8(2), 07. https://doi.org/10.51599/is.2024.08.02.07

Issue

Section

Multidisciplinary